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Abstract

A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of 

mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced 

inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical 

manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is 

activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory 

pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact 

of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and 

polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and 

HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV 

encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of 

HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). 

Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of 

monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent 

toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in 

SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib 

reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the 

replication of HIV in vitro, penetrates the BBB when systemically administered in mice and 

reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be 

useful as a novel therapeutic to treat humans with HAND.
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Introduction

With the introduction of combined antiretroviral therapy (ART), the neurocognitive 

dysfunction seen during HIV infection underwent a fundamental change. The incidence of 

HIV associated dementia was substantially reduced, but other milder forms of HIV 

associated neurocognitive disorders (HAND) have been recognized in approximately 40% to 

50% of people living with HIV (PLHIV) (Rumbaugh and Tyor, 2015). These milder forms 

of HAND, which include asymptomatic neurocognitive impairment and mild neurocognitive 

disorder, can be found in PLHIV even when they are receiving ART.

It has become increasingly clear that standard ART will not eradicate HIV from the CNS. 

With an aging population of PLHIV who are more vulnerable to cognitive disorders, the 

combination of older age plus the chronic presence of HIV in the brain appears to result in a 

higher prevalence of milder forms of HAND, but of even more concern is evidence that 

these patients are probably more susceptible to increasing cognitive dysfunction (Grant et 

al., 2014). ART had no effect either way, although there has also been concern that certain 

ART regimens could be neurotoxic (Robertson et al., 2010). At any rate, the above 

implications emphasize the critical need to develop alternative approaches to therapy for 

HAND.

In order to gain insight into pathogenesis of HAND and help develop alternative treatments, 

our group developed a model of HIV encephalitis (HIVE) in SCID mice whereby HIV-

infected or uniinfected (controls) human monocytes are injected into the right frontal lobe 

(Tyor et al., 1993). Later these mice were shown to develop mild behavioral abnormalities 

suggesting it is a model for the milder forms of HAND (Avgeropoulos et al., 1998a). We 

have since shown that two different ART regimens do not eradicate HIV from the CNS, 

although they are somewhat effective at ameliorating histopathological features of HIVE 

(Cook et al., 2005; Koneru et al., 2014). We have also used this model to investigate novel 

treatments for HAND (Fritz-French et al., 2014).

In this paper, the effects of ruxolitinib (Jakafi®), a Jak/STAT inhibitor, on HIVE in SCID 

mice were investigated. HIV activates multiple Jak/STAT proteins that also activate 

mononuclear phagocytes (Rivera-Rivera et al., 2012). Additionally, HIV-induced 

inflammation conferred by activation of the Jak-STAT pathway can modulate a variety of 

factors impacting CNS infection, including priming of uninfected bystander cells for 

infection, recruitment of uninfected cells to the site(s) of infection, increased production of 

virus per infected cell, reactivation of latent virus from viral reservoirs/sanctuaries, 

promotion of global immune dysfunction that drives viral persistence across many tissues 

and sites simultaneously, and activation of infected monocytes, resulting in increased 

trafficking across the blood brain barrier (BBB), which promotes HIV associated 

neurocognitive impairments (Bovolenta et al., 1999; Dunfee et al., 2006; Lichtfuss et al.; M 

Chevalier1, 2013; Sippy et al., 1995; Thames et al., 2014). Based on this complex interplay 

of HIV-induced signaling events, many of which are driven by Jak-STAT signaling, it is 

plausible that selective, targeted inhibition of the Jak-STAT pathway could represent an 

attractive mechanism to truncate HIV-driven immunomodulation that impacts HAND. 

Mononuclear phagocytes are the key population of cells in the CNS that are infected by HIV 
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and also mediate inflammation in humans with HIVE (Glass et al., 1995) and also in our 

model (Tyor et al., 1993; Avgeropoulos et al., 1998a; Sas et al., 2009). Therefore, we 

hypothesized that interfering with Jak/STAT using ruxolitinib would improve one or more 

features of HIVE in the model and also possibly inhibit HIV in mouse brains. We found that 

systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice 

and markedly inhibited astrogliosis. There appeared to be trends for improvement in mouse 

mononuclear phagocyte reaction during HIVE, improvement of neuronal dendritic 

arborization and decrease in HIV staining of human macrophages in the SCID mice treated 

with high dose ruxolitinib.

Methods

In vitro treatment of monocytes or macrophages with ruxolitinib and HIV-1

Macrophages and monocytes were isolated as previously described (Gavegnano et al., 2013). 

Cells were treated with various concentrations of ruxolitinib for 2 hr prior to infection 

(HIV-1baL). Cells were maintained for 6 days before viral quantification (p24-ELISA). For 

in vitro activation marker studies, CD14+ monocytes, or fully differentiated (CD14−/

CD11b+) macrophages were used. Monocytes were used as a model to mimic HIV-induced 

activation that transpires in the periphery, wherein presence or internalization of HIV-1 in 

monocytes confers activation (CD14+/CD16+), and subsequent trafficking of “Trojan horse” 

monocytes across and within the BBB. The method used to differentiate macrophages 

(CD14−/CD11b+) has been validated by our group to ensure that these cells are no longer 

expressing monocyte marker CD14, and are mature macrophages (CD11b expression). The 

in vitro and in vivo work with macrophages were performed with cells prepared and 

validated in this manner. Macrophages or monocytes were treated with various 

concentrations of drug prior to infection (HIV-1baL), and maintained for 3 or 6 days before 

quantification of HLA-DR, CD163, CCR5 (macrophages), or CD14/CD16 (monocytes); 

Miltenyi Biotec, San Diego, CA. Macrophages and monocytes were treated with various 

concentrations of drug for 6 days and stained with Near-IR live/dead dye and quantified by 

FACS. Antiviral potency was calculated as previously described (Gavegnano et al., 2013).

In vitro cytotoxicity

The median inhibitory concentration (IC50) was determined by Zombie Violet stain 

(BioLegend, San Diego, CA) according to manufacturer’s protocol (flow cytometry, Violet 

laser, 405 excitation/450 emission). For all assays, cells were cultured as described above 

and maintained in various concentrations of drug-containing medium for 6 days prior to 

assessment of toxicity. Cytotoxicity was considered when the concentrations of the test 

compounds alone inhibited growth by 50%. Gating strategy based on forward scatter (FSC) 

and side scatter (SSC) was established, followed by a sub gate for doublet discrimination. 

Additional negative control of cells incubated at various concentrations of AZT, which is 

known to be non-toxic to macrophages and monocytes, was used as a negative control, and a 

dose response of Cycloheximide (protein synthesis inhibitor additional positive control of 

cells exposed to various concentrations of cycloheximide, demonstrated a dose response of 

toxicity; data not shown. Gating was established based on viable cells cultured in the 

absence of drug. Data are represented in Supplemental Figure 1.
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Human Monocytes and HIV-1ADA

Human monocyte-derived macrophages (MDMs) were cultured and infected as described in 

our previous reports (Cook-Easterwood et al., 2007; Sas et al., 2009). Briefly, primary 

human monocytes and HIV-1ADA were obtained from Dr. Howard Gendelman, University of 

Nebraska Medical Center, Omaha, NE. Control and HIV-infected monocytes cells were 

stimulated with 7 ng/ml macrophage colony-stimulating factor for 7 days, followed by 

HIV-1 infection at MOI of 0.1, for 2 more weeks to allow for sufficient infection of at least 

50% of the cells. MDMs were collected and re-suspended in sterile phosphate-buffered 

saline (PBS) for intracranial (IC) inoculation.

Animals and inoculation

Five-week-old B6.CB17-Prkdcscid/SzJ male mice were obtained from the Jackson 

Laboratory. All procedures were approved by the Institutional Animal Care and Use 

Committee of the Atlanta Veterans Administration Medical Center and were in accordance 

with the guidelines of the NIH Guide for the Care and Use of Laboratory Animals (NIH 

Publication No. 80-23, revised 1996). Mice were intracerebrally (IC) inoculated either with 

105 HIV-infected or uninfected control human MDMs re-suspended in 30μL PBS into the 

right frontal lobe under xylazine (5 mg/kg) and ketamine (95 mg/kg) anesthesia. IC 

inoculations were performed using a syringe fitted with a collar guard to control depth to 3.5 

mm below the skull surface.

Treatment Groups

In the course of the 10-day infection period, experimental mice received saline, low dose 

ruxolitinib, high dose ruxolitinib or tenofovir by subcutaneous (SQ) injection whereas 

control mice received 100 μL of saline. HIV-infected mice were separated into four groups 

of six mice each. The first group received 100 μL of saline three times daily, the second 

group received low dose ruxolitinib (20 mg/kg per injection) in 100 μL of saline two times 

per day (BID), the third group received high dose ruxolitinib (50 mg/kg per injection) in 100 

μL of saline three times per day (TID) and the fourth group received 75 mg/kg per injection 

of tenofovir TID, based on dosing in a previously published study (Koneru et al., 2014). 

Preliminary data indicated the plasma half-life of ruxolitinib, as measured by mass 

spectroscopy, to be approximately 2–3 hours and hence the TID dosage. Mice were 

monitored for physical and behavioral changes and showed no signs of toxicity. Physical 

parameters monitored included weight, appearance of fur and ear positioning, and 

appearance of injection area. To monitor behavior, the mice were given fresh bedding daily 

to ensure that they were shredding and their level of lethargy was assessed. Food and water 

intake were normal as assessed daily.

Immunohistochemistry

At day 10 post IC-inoculation, all mice were sacrificed under xylazine (5 mg/kg) and 

ketamine (95 mg/kg) anesthesia and brains were extracted, snap-frozen in tissue-freezing 

medium, and stored at −70°C until cryosectioning. Tissue sectioning and 

immunohistochemistry were performed as described previously (Sas, 2007). Five μm 

coronal brain sections were taken beginning at the rostral end of the prefrontal cortex at 250 
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μm intervals antero-posteriorly. Since injections are done manually, the general site of 

injection falls in the cortical region spanning between 1.5 mm to 2.5 mm anterior to bregma, 

which is mainly in the frontal lobe. Cryosectioned tissues were then stained using an 

immunoperoxidase method as previously described (Avgeropoulos et al., 1998b). In brief, 

sections were stained for mouse microglia and macrophages (1:50 CD45; AbD Serotec), 

HIV (1:50 p24; Dako), astrogliosis [1:750 glial fibrillary acidic protein (GFAP); Chemicon], 

and neuronal dendrites (1:200 microtubule-associated protein-2 (MAP2); Chemicon). Slides 

were then reviewed under a light microscope (Olympus Microscope).

Densitometry scoring

The optical density was obtained as follows: 10 X (GFAP), 20 X (CD45) and 40 X (MAP2) 

and images were captured using an Olympus DP80 digital camera attached to an Olympus 

BX51 microscope. Images were then analyzed by Image J 1.45S software (NIH). 

Microscope and image capture parameters were kept constant. Each slide was subjected to 

the Image J software by selecting the representative GFAP or CD45 positive area and 

adjustments were made to include all GFAP and CD45-positive staining. We have kept 

image gain constant for all sections stained for the same protein marker. However, in order 

to make sure that data reflected only positive staining and not background staining, threshold 

adjustments were needed to be made between different markers, such as GFAP and CD45 

depending on the intensity of the staining. For example, GFAP antibody staining is relatively 

more intense compared to CD45, therefore, the use of different gain was necessary. 

Artifactual signals such as empty ventricles or folded tissue were not measured. For MAP2 

staining, mean optical density in the uninjected hemisphere (left) was assigned as a control 

for the injected hemisphere (right). The intensity of signal was measured in both the 

uninjected and injected hemispheres and the percent reduction in MAP2 staining in the 

injected hemisphere in relation to the uninjected hemisphere was considered a surrogate for 

the percent reduction in dendritic arborization. The evaluator was blinded to treatment when 

performing densitometry scoring.

P24 measurement

P24 positive cells were manually counted in all the sections taken at 250 μm intervals 

beginning at the anterior tip of the prefrontal cerebral cortex. A total of 10 sections were 

taken for the analysis, spanning a total of about 2.5 mm into the frontal cortex. The evaluator 

was blinded to treatment when counting p24 positive cells.

Ruxolitinib extraction and quantification

In order to measure levels of Ruxolitinib in the brain, mice underwent cardiac perfusion with 

PBS prior to brain extractions. After brain extraction, posterior fossa (the cerebellum and 

brainstem) was taken, snap frozen and stored at −70 °C. Posterior fossa from each mouse 

was then weighed and homogenized in water:methanol (2:1) solution. The homogenates 

were then centrifuged and the pellet discarded. The supernatant was dried by evaporation 

using nitrogen gas, resuspended in 1 mL water and put through Isolute-XL C18 columns 

(Biotage, Uppsala, Sweden). Drug was then eluted with acetonitrile and subsequently dried. 

Finally, samples were resuspended in 1 mL of 75% methanol (containing 0.1% formic acid) 
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and ruxolitinib levels were measured by liquid chromatography and tandem mass 

spectrometry (LC-MS/MS).

Liquid Chromatograph and Tandem Mass Spectrometry (LC-MS/MS)

Chromatographic separation was performed by Ultimate 3000 LC system (Thermo 

Scientific, MA, USA), on a Kinetex XB-C18 column (50 × 2.1 mm) with a 2.6 μm particle 

size (Phenomenex, CA, USA). The mobile phase A consisted of 0.1% formic acid in water 

and the mobile phase B consisted of methanol. Isocratic elution was used for the separation 

with mobile phase A:B at 25:75 (v/v). The column was maintained at ambient temperature. 

The flow rate was maintained at 250 μL/min and a 20 μL injection was used. An API5000 

triple quadrupole mass spectrometer (ABsciex, MA, USA.) was used for detection, with 

electrospray ionization in positive ion mode. The mass spectrum parameters for the analytes 

were set as follows: ion spray voltage, 5500 V; curtain gas, 25 psi; ion source gas 1, 40 psi; 

ion source gas 2, 40 psi; source temperature, 500 °C and collision gas, 5 psi. Multiple 

reaction monitoring transitions for ruxolitinib was m/z 307.3 → 186.0 and for baricitinib 

(internal standard) m/z 372.2 → 186.0. Analyst software version 1.5.2 was used to operate 

the mass spectrometer and to perform data analysis. Calibration curves were generated from 

standard of ruxolitinib by serial dilutions in blank mouse brain samples using the same 

extraction method described above. The calibration curves had r2 value greater than 0.99.

Statistics

Analyses of densitometry values were performed using 1-way ANOVA and an unpaired t-

test in GraphPad Prism 5 for Windows (GraphPad Software). Significance was set at 

*=p<0.05 and **=p<0.01 for all analyses. Statistical analysis of activation markers were 

performed using a One Way ANOVA followed by a post-hoc test, where p < 0.05 was 

considered statistically significant. T-test was used to compare the mean numbers of p24 

positive monocytes between saline and ruxolitinib treated HIV-infected mice. Six mice were 

used for each treatment condition. .

Results

Antiviral potency and toxicity of ruxolitinib in primary human lymphocytes and 
macrophages

Ruxolitinib was not cytotoxic (> 50 μM for ruxolitinib) in primary human macrophages, and 

antiviral potency was 0.3 ± 0.1 μM (median effective concentration or EC50) and 3.1 ± 1.8 

(90% effective concentration or EC90) in macrophages (Supplemental Table 1). As expected, 

AZT control demonstrated submicromolar antiviral potency. Therapeutic window of safety 

(ratio of toxicity:potency) was > 100 for ruxolitinib, demonstrating that observed effects are 

a function of anti-HIV effects of ruxolitinib and not toxicity (Gavegnano, C., et al., 2014).

Ruxolitinib inhibited HIV-induced activation in primary human macrophages and 
monocytes

Ruxolitinib conferred a dose dependent reduction of activation markers HLA-DR, CD163, 

CCR5 (macrophages), and CD14/CD16 (monocytes) that were up-regulated by HIV-1 

infection in primary human macrophages and monocytes (Figure 1A and B). Data reported 
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are normalized to percent of expression versus no drug controls, wherein original starting 

percentage of CD14+/CD16+ monocytes exposed to HIV-1 were 62 ± 4.6 %, and 51 ± 3.9 % 

for macrophages.

Ruxolitinib crosses the blood brain barrier (BBB)

Ruxolitinib was found to cross the BBB and enter the brain parenchyma following SQ 

injection of the higher dose (50 mg/kg/injection). Levels of ruxolitinib were measured in the 

brain parenchyma by mass spectroscopy 1 hr after the last injection. Ruxolitinib was 

detected in the brains of all 6 mice used in this study (Table 1). The average level of 

ruxolitinib in the mouse- brain, was 137.7 ng/g of brain tissue.

Ruxolitinib decreases encephalitis markers

High dose ruxolitinib (50 mg/kg per injection TID) completely abrogated astrogliosis 

induced by HIV infection (Figures 2A and 3C). GFAP densitometry decreased by 60% in 

the high dose ruxolitinib group compared to the HIV saline group and was comparable to the 

levels of the uninfected control mice. High dose ruxolitinib treatment also showed a 

decrease in p24 positive human macrophages counted (Figures 2B and 3D–F), a reversal in 

HIV mediated increase in mononuclear phagocyte staining (Figures 2C and 3G–I), and an 

improvement in neuronal arborization as evidenced by an increase in MAP-2 staining 

(Figure. 2D and 3J–L), in mice that received high dose ruxolitinib. However, these 

observations did not reach statistical significance with p values of 0.24, 0.21 and 0.23 

respectively.

Low dose treatment of ruxolitinib (20 mg/kg per injection BID) also showed a statistically 

significant decrease in astrogliosis compared to HIVE mice receiving saline, (p=0.007) 

(Figure 2E). However, it failed to show any trend in other encephalitis markers. An 

antiretroviral drug, tenofovir, also resulted in 69% reduction in astrogliosis compared to 

saline treated group (p=0.0001). In addition, tenofovir showed a decrease in the average 

viral load but did not reach statistical significance (p=0.28). There were no observable trends 

in CD45 and MAP-2 staining after treatment with tenofovir.

Discussion

Our studies demonstrated in vitro, where direct consideration for the impact of ruxolitinib on 

the dynamics of HIV and monocytes/macrophages can be observed, that ruxolitinib was a 

submicromolar inhibitor of HIV replication in macrophages without apparent toxicity. 

Ruxolitinib significantly reduced (p < 0.05) HIV-induced activation markers (monocytes/

macrophages; CD14/CD16, HLA-DR, CCR5, CD163), which are linked to trafficking of 

infected cells to the CNS, disease progression, and neurocognitive dysfunction. Our group 

has previously reported the toxicity profile for ruxolitinib in primary human cells, including 

lymphocytes and macrophages (Gavegnano et al, 2013). These results, along with toxicity in 

monocytes are summarized in Supplemental Table 1. The therapeutic window (ratio of 

potency:toxicity) for the observed antiviral and inhibition of pro-HIV events is > 100 for 

ruxolitinib in monocytes, macrophages, and lymphocytes. Additionally, the FDA submission 

information for ruxolitinib contains extensive in vitro and in vivo toxicity studies, 
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demonstrating that ruxolitinib is not toxic up to 100 μM in vitro, and that its in vivo peak 

and steady-state plasma concentrations for FDA approved doses are above the 

concentrations required to confer anti-HIV properties in the assays reported herein. 

Therefore, we are confident that the observed results are a function of the Jak1/2 inhibition 

conferred by ruxolitinib, and not toxicity.

Regarding in vivo murine studies, the plasma pharmacokinetics (PK) coupled with the 

pharmacodynamic (PD) profile in vivo is reported (Chen et al., 2013; Verstovsek et al., 

2012), and are also summarized in the ruxolitinib package insert (Jakafi.com). To assess 

PK/PD relative to the in vitro and in vivo efficacy reported herein, baseline PPK model 

parameters (Chen et al., 2013 and Verstovsek et al, 2012; without explicit patient covariates) 

were used to construct our PPK model. Our model used ω2 as the ↔ subject variance (IIV) 

for that PK parameter, and σ2 = residual variance (within subjects). Log-normal error 

structure (e.g. CL/Fi = CL/F ”typical” × eηi ηi are N(0, ω2) i.e., %CV = √(e − 1) × 100 was 

used and 1,000 theoretical participants administered 10 mg ruxolitinib twice per day were 

modeled. Resulting computed percentile (P10, P25, P50 P75, P90) plasma concentrations 

versus time were used to mimic in vivo doses of 10 mg and 25 mg bid, which are the low 

and high FDA-approved doses. Our model demonstrated that the PD effect of ruxolitinib 

falls within the Cmax and steady-state range for all FDA approved doses of ruxolitinib.

Ruxolitinib was found to cross the BBB when administered to mice systemically as 

measured by tandem mass spectroscopy in the brain fossa. The brain fossa was selected for 

the measurement of ruxolitinib because previous work in our laboratory, using antiretroviral 

drugs, has shown a uniform distribution of the drugs within the different compartments of 

the brain (Cook et al., 2005) And since the majority of the brain tissue was used for 

histopathological analysis, the brain stem and cerebellum were necessarily used as 

representative regions to measure drug levels. In light of the CNS effects of ruxolitinib on 

astrogliosis in HIVE mice, the detection of ruxolitinib in the brain is not surprising. 

However, a European review for approval in humans states that ruxolitinib could not be 

detected in the brains of rats systemically administered the drug using whole body 

autoradiography (http://ec.europa.eu/health/documents/community-register/

2012/20120823123254/anx_123254_en.pdf). We believe this method of detection (i.e., 

whole body radiation) is not as sensitive as our use of brain parenchymal mass spectroscopy 

analysis. In addition, a Canadian review for approval of ruxolitinib for use in humans states 

that “Ruxolitinib and its metabolites crossed the blood brain barrier (<10% of plasma 

concentrations) and placental barrier of rats” (http://www.hc-sc.gc.ca/dhp-mps/prodpharma/

sbd-smd/drug-med/sbd_smd_2012_jakavi_151723-eng.php). Although these data do not 

necessarily predict that the drug will cross the BBB in humans, the fact that the potential 

population involved, PLHIV with HAND, have mild encephalitis and may have an impaired 

BBB, lends further support for a trial in humans, which will be enrolling a phase 2a NIH-

ACTG-sponsored study in 2015 to assess the impact of ruxolitinib on HIV-induced 

inflammation.

In vivo, ruxolitinib resulted in a significant reduction in astrogliosis. Astrogliosis is a 

common finding in HIVE in humans and correlates with neuropsychological impairment 

(Everall et al., 2009). Astrogliosis has been postulated to play a role in the pathogenesis of 
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HIVE (Schouten et al., 2011; Thompson et al., 2001). Furthermore, astrocytes are probably 

activated during CNS infection by HIV and they almost certainly are capable of producing 

many of the substances such as cytokines, chemokines and other potential neurotoxins that 

are implicated in HAND pathogenesis. In our model of HIVE in mice, astrogliosis is 

consistently, strongly induced by HIV infection and has previously been shown to be 

reduced by ART (Cook et al., 2005; Koneru et al., 2014). It was therefore somewhat 

surprising that ruxolitinib alone, either in low dose or high dose and without accompanying 

ART, showed substantially reduced astrogliosis in HIVE mice (Figures 2A and 3A–C). 

However, ruxolitinib inhibits Jak1, which has been shown to be activated in astrocytes 

following cerebral ischemia in rats (Justicia et al., 2000). Further, interferon-gamma (IFN-γ) 

production by many cell types, including astrocytes themselves, is regulated through this 

pathway. Stimulation of astrocytes by IFN-γ is known to result in the production of 

neurotoxins, which could be involved in HAND pathogenesis (Lee et al., 2013). It is 

therefore possible that the inhibitory effects of ruxolitinib in HIVE in mice could have 

important implications in the treatment of HAND in humans.

Ruxolitinib treatment in HIVE mice also showed a reduction in the average mouse 

mononuclear phagocyte numbers but did not reach statistical significance (p=0.2). As 

mentioned in the Introduction, mononuclear phagocytes are activated by HIV through Jak/

STAT signaling and many cytokines that are produced during HIV infection signal through 

the Jak/STAT pathway (Rivera-Rivera et al., 2012). Mononuclear phagocytes are arguably 

the most important cell type implicated in HAND pathogenesis. That ruxolitinib likely has 

an inhibitory effect on these cells during HIVE in mice has potential important 

consequences for the effectiveness of Jak/STAT inhibitors in ameliorating human HAND, 

especially in those HIV-infected persons already receiving ART. Our data also suggest that 

there are positive effects of ruxolitinib on MAP2 staining (i.e., dendritic arborization), as 

shown by increased MAP-2 staining in the ruxolitinib treated mice compared to the saline 

controls, although it did not attain statistical significance (p=0.21). The fact that ruxolitinib 

treatment of our HIVE mice may also be improving the detrimental neuronal effects of HIV 

adds further credence to the idea that Jak/STAT inhibitors could be attractive choices as an 

add on treatment for HAND patients who are taking ART. We have previously shown that 

dendritic arborization, as measured by MAP2 immunostaining, correlates with behavioral 

analysis of HIVE mice (Cook-Easterwood et al., 2007; Sas et al., 2009). Therefore, 

ameliorating MAP2 abnormalities predicts improvement in behavior of HIVE mice. In the 

future we plan to test the effect of ruxolitinib on the behavior of HIVE mice. We predict 

behavior in the water radial arm maze will be improved with high dose ruxolitinib, which 

would validate the possible improvement in MAP2 staining and further suggest that 

ruxolitinib will improve cognitive deficits in HAND patients. These data are complimented 

by the observed decrease in p24+ cells in HIVE mice treated with high dose ruxolitinib and 

may be related to its effects on mononuclear phagocytes activation in the brain and/or effects 

on inhibition of HIV replication.

In summary, we have shown that in vitro, ruxolitinib inhibits HIV-induced activation of 

monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163). These markers 

are associated with trafficking of infected monocytes across and within the BBB, and are 

associated with HIV-induced neurocognitive dysfunction and impairments including HAND. 

Haile et al. Page 9

Neurobiol Dis. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, ruxolitinib is a submicromolar inhibitor of HIV-1 replication in macrophages 

in vitro, without any apparent toxicity. When administered systemically to mice with HIVE, 

ruxolitinib crosses the BBB and has substantial effects on pathology, most notably the 

reduction of astrogliosis. The data further suggest that other possible effects on reducing 

mononuclear phagocyte numbers, preventing dendritic abnormalities that probably relate to 

cognitive dysfunction, and possibly reducing HIV CNS load are all positive effects that 

suggest ruxolitinib will be effective in humans with HAND.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ruxolitinib inhibits HIV-induced activation in primary human macrophages
(A) and monocytes (B). Ruxolitinib conferred a dose dependent reduction of activation 

markers that were up-regulated by HIV-1 infection in primary human macrophages (A) and 

monocytes (B). Data are mean and standard deviations from at least three independent 

experiments. * Indicates significant reduction versus no drug controls, p < 0.05, One Way 

ANOVA. All values are mean ± SD.
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Figure 2a
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Figure 2b

Figure 2. Ruxolitinib decreases encephalitis markers in the brain in a mouse encephalitis model
High dose (HD) ruxolitinib (50 mg/kg per injection) significantly reduced astrogliosis (A), 

and showed a trend in the reduction of microgliosis (B) and viral load (C), and a trend for 

improvement of neuronal dendritic structure (D). Low dose (LD) ruxolitinib also 

significantly reduced astrogliosis (E). Analyses of densitometry values were performed 

using 1-way ANOVA and an unpaired t-test in GraphPad Prism 5 for Windows (GraphPad 

Software). Statistical analysis of activation markers were performed using a One Way 

ANOVA followed by a post-hoc test, while t-test was used to compare mean values between 

saline treated and ruxolitinib treated HIV-infected mice. Six mice were used for each 

treatment condition. *=p<0.05 and **=p<0.01 were used to denote significant differences 

between saline treated and ruxolitinib treated HIV infected mice. All values are mean ± SD.
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Figure 3. Representative photomicrographs showing decrease in GFAP, CD45 as well as p24 
positive cells but increase in MAP-2 staining after treatment with high dose ruxolitinib
Mice treated with ruxolitinib (50 mg/kg per injection) were sacrificed 10 days post infection. 

Brains were extracted and 5 μm coronal sections were stained, viewed under a light 

microscope and imaged for astrogliosis marker, GFAP (A–C), viral burden p24 (D–F), 

mononuclear phagocytes marker, CD45 (G–I) and dendritic arborization marker, MAP-2 (J–

L).
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Table 1
Ruxolitinib concentrations in the brain of mice treated with high-dose ruxolitinib (50 
mg/kg per injection)

Posterior fossa from 6 mice were homogenized and drug levels were measured by tandem mass spectroscopy. 

All six mice receiving high dose ruxolitinib demonstrated quantifiable concentrations of the drug in the 

posterior fossa that were harvested during steady-state pharmacokinetics of drug treatment. Concentrations 

ranged from 34.1–247.2 ng/g of tissue.

Sample # Ruxolitinib (ng/g)

1 133.9

2 247.2

3 34.1

4 139.2

5 141.8

6 130.2
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